Autour de la conjecture de Tate entière pour certains produits de
dimension $3$ sur un corps fini
Authors: Federico Scavia
NULL
Federico Scavia
Let $X$ be the product of a surface satisfying $b_2=\rho$ and of a curve over
a finite field. We study a strong form of the integral Tate conjecture for
$1$-cycles on $X$. We generalize and give unconditional proofs of several
results of our previous paper with J.-L. Colliot-Thélène.