Tropicalization of the universal JacobianArticleAuteurs : Margarida Melo ; Samouil Molcho

; Martin Ulirsch

; Filippo Viviani
NULL##0000-0003-1139-8758##0000-0001-8481-7947##NULL
Margarida Melo;Samouil Molcho;Martin Ulirsch;Filippo Viviani
In this article we provide a stack-theoretic framework to study the universal tropical Jacobian over the moduli space of tropical curves. We develop two approaches to the process of tropicalization of the universal compactified Jacobian over the moduli space of curves -- one from a logarithmic and the other from a non-Archimedean analytic point of view. The central result from both points of view is that the tropicalization of the universal compactified Jacobian is the universal tropical Jacobian and that the tropicalization maps in each of the two contexts are compatible with the tautological morphisms. In a sequel we will use the techniques developed here to provide explicit polyhedral models for the logarithmic Picard variety.
Comment: 51 pages, 2 figures, v3: published version
Volume : Volume 6
Publié le : 22 août 2022
Accepté le : 2 mai 2022
Soumis le : 11 août 2021
Mots-clés : Mathematics - Algebraic Geometry, 14T05, 14H10, 14H40
Financement :
Source : OpenAIRE Graph- Moduli, Algebraic Cycles, and Invariants; Financeur: European Commission; Code: 786580
- Birational and non-archimedean geometries; Financeur: European Commission; Code: 770922
- Center for Mathematics, University of Coimbra; Financeur: European Commission; Code: UIDB/00324/2020
- Foundations and applications of tropical moduli theory; Financeur: European Commission; Code: 793039