Brendan Creutz ; Jose Felipe Voloch - Etale descent obstruction and anabelian geometry of curves over finite fields

epiga:11483 - Épijournal de Géométrie Algébrique, 9 juillet 2024, Volume 8 - https://doi.org/10.46298/epiga.2024.11483
Etale descent obstruction and anabelian geometry of curves over finite fieldsArticle

Auteurs : Brendan Creutz ; Jose Felipe Voloch

    Let $C$ and $D$ be smooth, proper and geometrically integral curves over a finite field $F$. Any morphism from $D$ to $C$ induces a morphism of their étale fundamental groups. The anabelian philosophy proposed by Grothendieck suggests that, when $C$ has genus at least $2$, all open homomorphisms between the étale fundamental groups should arise in this way from a nonconstant morphism of curves. We relate this expectation to the arithmetic of the curve $C_K$ over the global function field $K = F(D)$. Specifically, we show that there is a bijection between the set of conjugacy classes of well-behaved morphism of fundamental groups and locally constant adelic points of $C_K$ that survive étale descent. We use this to provide further evidence for the anabelian conjecture by relating it to another recent conjecture by Sutherland and the second author.


    Volume : Volume 8
    Publié le : 9 juillet 2024
    Accepté le : 16 février 2024
    Soumis le : 20 juin 2023
    Mots-clés : Mathematics - Number Theory,Mathematics - Algebraic Geometry,11G20, 11G30, 14G05, 14G15

    Publications

    A une évaluation
    • 1 zbMATH Open

    Statistiques de consultation

    Cette page a été consultée 892 fois.
    Le PDF de cet article a été téléchargé 828 fois.