Volume 3

Third volume of Épijournal de Géométrie Algébrique - 2019

1. Infinite families of inequivalent real circle actions on affine four-space

Moser-Jauslin Lucy.
The main result of this article is to construct infinite families of non-equivalent equivariant real forms of linear C*-actions on affine four-space. We consider the real form of $\mathbb{C}^*$ whose fixed point is a circle. In [F-MJ] one example of a non-linearizable circle action was constructed. Here, this result is generalized by developing a new approach which allows us to compare different real forms. The constructions of these forms are based on the structure of equivariant $\mathrm{O}_2(\mathbb{C})$-vector bundles.

2. Double spinor Calabi-Yau varieties

Manivel, Laurent.
Consider the ten-dimensional spinor variety in the projectivization of a half-spin representation of dimension sixteen. The intersection X of two general translates of this variety is a smooth Calabi-Yau fivefold, as well as the intersection Y of their projective duals. We prove that although X and Y are not birationally equivalent, they are derived equivalent and L-equivalent in the sense of Kuznetsov and Shinder.

3. $\overline{M}_{1,n}$ is usually not uniruled in characteristic $p$

Sawin, Will.
Using etale cohomology, we define a birational invariant for varieties in characteristic $p$ that serves as an obstruction to uniruledness - a variant on an obstruction to unirationality due to Ekedahl. We apply this to $\overline{M}_{1,n}$ and show that $\overline{M}_{1,n}$ is not uniruled in characteristic $p$ as long as $n \geq p \geq 11$. To do this, we use Deligne's description of the etale cohomology of $\overline{M}_{1,n}$ and apply the theory of congruences between modular forms.

4. Socle pairings on tautological rings

Janda, Felix ; Pixton, Aaron.
We study some aspects of the $\lambda_g$ pairing on the tautological ring of $M_g^c$, the moduli space of genus $g$ stable curves of compact type. We consider pairing kappa classes with pure boundary strata, all tautological classes supported on the boundary, or the full tautological ring. We prove that the rank of this restricted pairing is equal in the first two cases and has an explicit formula in terms of partitions, while in the last case the rank increases by precisely the rank of the $\lambda_g\lambda_{g - 1}$ pairing on the tautological ring of $M_g$.

5. P-adic lattices are not Kähler groups

Klingler, Bruno.
In this note we show that any lattice in a simple p-adic Lie group is not the fundamental group of a compact Ka\"hler manifold, as well as some variants of this result.

6. Irregular Hodge numbers of confluent hypergeometric differential equations

Sabbah, Claude ; Yu, Jeng-Daw.
We give a formula computing the irregular Hodge numbers for a confluent hypergeometric differential equation.