Third volume of Épijournal de Géométrie Algébrique - 2019

The main result of this article is to construct infinite families of non-equivalent equivariant real forms of linear C*-actions on affine four-space. We consider the real form of $\mathbb{C}^*$ whose fixed point is a circle. In [F-MJ] one example of a non-linearizable circle action was constructed. Here, this result is generalized by developing a new approach which allows us to compare different real forms. The constructions of these forms are based on the structure of equivariant $\mathrm{O}_2(\mathbb{C})$-vector bundles.

Consider the ten-dimensional spinor variety in the projectivization of a half-spin representation of dimension sixteen. The intersection X of two general translates of this variety is a smooth Calabi-Yau fivefold, as well as the intersection Y of their projective duals. We prove that although X and Y are not birationally equivalent, they are derived equivalent and L-equivalent in the sense of Kuznetsov and Shinder.

Using etale cohomology, we define a birational invariant for varieties in characteristic $p$ that serves as an obstruction to uniruledness - a variant on an obstruction to unirationality due to Ekedahl. We apply this to $\overline{M}_{1,n}$ and show that $\overline{M}_{1,n}$ is not uniruled in characteristic $p$ as long as $n \geq p \geq 11$. To do this, we use Deligne's description of the etale cohomology of $\overline{M}_{1,n}$ and apply the theory of congruences between modular forms.

We study some aspects of the $\lambda_g$ pairing on the tautological ring of $M_g^c$, the moduli space of genus $g$ stable curves of compact type. We consider pairing kappa classes with pure boundary strata, all tautological classes supported on the boundary, or the full tautological ring. We prove that the rank of this restricted pairing is equal in the first two cases and has an explicit formula in terms of partitions, while in the last case the rank increases by precisely the rank of the $\lambda_g\lambda_{g - 1}$ pairing on the tautological ring of $M_g$.

We provide an equivalence between the category of affine, smooth group schemes over the ring of generalized dual numbers $k[I]$, and the category of extensions of the form $1 \to \text{Lie}(G, I) \to E \to G \to 1$ where G is an affine, smooth group scheme over k. Here k is an arbitrary commutative ring and $k[I] = k \oplus I$ with $I^2 = 0$. The equivalence is given by Weil restriction, and we provide a quasi-inverse which we call Weil extension. It is compatible with the exact structures and the $\mathbb{O}_k$-module stack structures on both categories. Our constructions rely on the use of the group algebra scheme of an affine group scheme; we introduce this object and establish its main properties. As an application, we establish a Dieudonné classification for smooth, commutative, unipotent group schemes over $k[I]$.

In this note we show that any lattice in a simple p-adic Lie group is not the fundamental group of a compact Ka\"hler manifold, as well as some variants of this result.

We give a formula computing the irregular Hodge numbers for a confluent hypergeometric differential equation.

When $W$ is a finite Coxeter group acting by its reflection representation on $E$, we describe the category ${\mathsf{Perv}}_W(E_{\mathbb C}, {\mathcal{H}}_{\mathbb C})$ of $W$-equivariant perverse sheaves on $E_{\mathbb C}$, smooth with respect to the stratification by reflection hyperplanes. By using Kapranov and Schechtman's recent analysis of perverse sheaves on hyperplane arrangements, we find an equivalence of categories from ${\mathsf{Perv}}_W(E_{\mathbb C}, {\mathcal{H}}_{\mathbb C})$ to a category of finite-dimensional modules over an algebra given by explicit generators and relations. We also define categories of equivariant perverse sheaves on affine buildings, e.g., $G$-equivariant perverse sheaves on the Bruhat--Tits building of a $p$-adic group $G$. In this setting, we find that a construction of Schneider and Stuhler gives equivariant perverse sheaves associated to depth zero representations.

We show that if a Fano manifold does not admit Kahler-Einstein metrics then the Kahler potentials along the continuity method subconverge to a function with analytic singularities along a subvariety which solves the homogeneous complex Monge-Ampere equation on its complement, confirming an expectation of Tian-Yau.

We classify singular Enriques surfaces in characteristic two supporting a rank nine configuration of smooth rational curves. They come in one-dimensional families defined over the prime field, paralleling the situation in other characteristics, but featuring novel aspects. Contracting the given rational curves, one can derive algebraic surfaces with isolated ADE-singularities and trivial canonical bundle whose Q_l-cohomology equals that of a projective plane. Similar existence results are developed for classical Enriques surfaces. We also work out an application to integral models of Enriques surfaces (and K3 surfaces).

To reinforce the analogy between the mapping class group and the Cremona group of rank $2$ over an algebraic closed field, we look for a graph analoguous to the curve graph and such that the Cremona group acts on it non-trivially. A candidate is a graph introduced by D. Wright. However, we demonstrate that it is not Gromov-hyperbolic. This answers a question of A. Minasyan and D. Osin. Then, we construct two graphs associated to a Vorono\"i tesselation of the Cremona group introduced in a previous work of the autor. We show that one is quasi-isometric to the Wright graph. We prove that the second one is Gromov-hyperbolic.

The B-Semiampleness Conjecture of Prokhorov and Shokurov predicts that the moduli part in a canonical bundle formula is semiample on a birational modification. We prove that the restriction of the moduli part to any sufficiently high divisorial valuation is semiample, assuming the conjecture in lower dimensions.