This volume consists in articles written in honour of Claire Voisin.

We generalize the finiteness theorem for the locus of Hodge classes with fixed self-intersection number, due to Cattani, Deligne, and Kaplan, from Hodge classes to self-dual classes. The proof uses the definability of period mappings in the o-minimal structure $\mathbb{R}_{\mathrm{an},\exp}$.

We give new examples of algebraic integral cohomology classes on smooth projective complex varieties that are not integral linear combinations of classes of smooth subvarieties. Some of our examples have dimension 6, the lowest possible. The classes that we consider are minimal cohomology classes on Jacobians of very general curves. Our main tool is complex cobordism.

K3 surfaces have been studied from many points of view, but the positivity of the cotangent bundle is not well understood. In this paper we explore the surprisingly rich geometry of the projectivised cotangent bundle of a very general polarised K3 surface $S$ of degree two. In particular, we describe the geometry of a surface $D_S \subset \mathbb{P}(\Omega_S)$ that plays a similar role to the surface of bitangents for a quartic in $\mathbb{P}^3$.

To each complex composition algebra $\mathbb{A}$, there associates a projective symmetric manifold $X(\mathbb{A})$ of Picard number one, which is just a smooth hyperplane section of the following varieties ${\rm Lag}(3,6), {\rm Gr}(3,6), \mathbb{S}_6, E_7/P_7.$ In this paper, it is proven that these varieties are rigid, namely for any smooth family of projective manifolds over a connected base, if one fiber is isomorphic to $X(\mathbb{A})$, then every fiber is isomorphic to $X(\mathbb{A})$.

The surface of lines in a cubic fourfold intersecting a fixed line splits motivically into two parts, one of which resembles a K3 surface. We define the analogue of the Beauville-Voisin class and study the push-forward map to the Fano variety of all lines with respect to the natural splitting of the Bloch-Beilinson filtration introduced by Mingmin Shen and Charles Vial.

Perverse-Hodge complexes are objects in the derived category of coherent sheaves obtained from Hodge modules associated with Saito's decomposition theorem. We study perverse-Hodge complexes for Lagrangian fibrations and propose a symmetry between them. This conjectural symmetry categorifies the "Perverse = Hodge" identity of the authors and specializes to Matsushita's theorem on the higher direct images of the structure sheaf. We verify our conjecture in several cases by making connections with variations of Hodge structures, Hilbert schemes, and Looijenga-Lunts-Verbitsky Lie algebras.

We extend the algebraic K-stability theory to projective klt pairs with a big anticanonical class. While in general such a pair could behave pathologically, it is observed in this note that K-semistability condition will force them to have a klt anticanonical model, whose stability property is the same as the original pair.